Distributed Proximal Algorithms for Multiagent Optimization With Coupled Inequality Constraints

نویسندگان

چکیده

This paper aims to address distributed optimization problems over directed and time-varying networks, where the global objective function consists of a sum locally accessible convex functions subject feasible set constraint coupled inequality constraints whose information is only partially each agent. For this problem, proximal-based algorithm, called proximal primal-dual (DPPD) proposed based on celebrated centralized point algorithm. It shown that algorithm can lead optimal solution with general stepsize, which diminishing non-summable, but not necessarily square-summable, saddle-point running evaluation error vanishes proportionally $O(1/\sqrt{k})$, $k>0$ iteration number. Finally, simulation example presented corroborate effectiveness

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Optimization with Inequality Constraints

Bayesian optimization is a powerful framework for minimizing expensive objective functions while using very few function evaluations. It has been successfully applied to a variety of problems, including hyperparameter tuning and experimental design. However, this framework has not been extended to the inequality-constrained optimization setting, particularly the setting in which evaluating feas...

متن کامل

Lookahead Bayesian Optimization with Inequality Constraints

We consider the task of optimizing an objective function subject to inequality constraints when both the objective and the constraints are expensive to evaluate. Bayesian optimization (BO) is a popular way to tackle optimization problems with expensive objective function evaluations, but has mostly been applied to unconstrained problems. Several BO approaches have been proposed to address expen...

متن کامل

Multiobjective optimization problem with variational inequality constraints

We study a general multiobjective optimization problem with variational inequality, equality, inequality and abstract constraints. Fritz John type necessary optimality conditions involving Mordukhovich coderivatives are derived. They lead to Kuhn-Tucker type necessary optimality conditions under additional constraint qualifications including the calmness condition, the error bound constraint qu...

متن کامل

Fully fuzzy linear programming with inequality constraints

Fuzzy linear programming problem occur in many elds such as mathematical modeling, Control theory and Management sciences, etc. In this paper we focus on a kind of Linear Programming with fuzzy numbers and variables namely Fully Fuzzy Linear Programming (FFLP) problem, in which the constraints are in inequality forms. Then a new method is proposed to ne the fuzzy solution for solving (FFLP). Nu...

متن کامل

Algorithms for stochastic optimization with expectation constraints

This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with functional constraints given in the form of expectation. We present a new stochastic approximation (SA) type algorithm, namely the alternating mirror-descent SA (AMDSA) algorithm, to minimize these expectation constrained problems, and show that it exhibits the optimal rate of convergen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2021

ISSN: ['0018-9286', '1558-2523', '2334-3303']

DOI: https://doi.org/10.1109/tac.2020.2989282